Effect of a sharp change of the incidence function on the dynamics of a simple disease.
نویسندگان
چکیده
We investigate two cases of a sharp change of incidencec functions on the dynamics of a susceptible-infective-susceptible epidemic model. In the first case, low population levels have mass action incidence, while high population levels have proportional incidence, the switch occurring when the total population reaches a certain threshold. Using a modified Dulac theorem, we prove that this system has a single equilibrium which attracts all solutions for which the disease is present and the population remains bounded. In the second case, an increase of the number of infectives leads to a mass action term being added to a standard incidence term. We show that this allows a Hopf bifurcation to occur, with periodic orbits being generated when a locally asymptotically stable equilibrium loses stability.
منابع مشابه
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملThe effect of Carbon nanotube on the most effective peptide in Alzheimer's disease in the presence of Dimethyl Sulfoxide: In Silico approach
Due to the non-polar nature of carbon nanotubes, their use in aqueous environments is limited. Therefore, auxiliary solvents such as dimethyl sulfoxide are used to study the interactions between the amyloid-β peptide and carbon nanotubes. In this work, the interaction of Aβ (1-42), the most effective peptide in the development of Alzheimer's disease, with the carbon nanotube was performed using...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملEffect of Citrullus Colocynthis pulp on renal function in streptozotocin-induced diabetic rats
Introduction: Diabetic nephropathy is one of the most serious microvascular complications of diabetes and the main cause of end-stage renal disease. Various herbs have been used to control diabetes complications. This study aimed at investigating the effect of Citrullus colocynthis pulp on diabetes-induced renal damage in male rats. ...
متن کاملA Study on the Contact Ellipse and the Contact Pressure During the Wheel Wear through Passing the Tracks including Several Sharp Curves
Wheel wear has been a concern in the railway for several decades. Studying the form change of the wheel/rail contacts in particular railways consisting of sharp curves helps to identify the risk of severe or catastrophic wear to minimize maintenance costs in order to be competitive in the transportation business. In this paper, the wheel/rail contact was studied on the particular railways. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biological dynamics
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2010